CTP431: Fundamentals of Computer Music

Digital Sound Synthesis Overview

Juhan Nam

Category of Sound Synthesis

- Sample-based synthesis
- Abstract sound synthesis
- Physical modeling

Sample-based Synthesis

- Use recorded samples
 - Requite large memory
 - Natural tones but not flexible: pitch shifting by resampling
 - Concatenative synthesis: e.g. singing voice synthesis
 - Granular Synthesis

Abstract Sound Synthesis

- Use "digital" (or band-limited) oscillators and modifiers (digital filters)
 - Highly parametric and programmable
 - Additive: a collection of sine oscillations
 - Subtractive: harmonic oscillator (sawtooth, square) + filter
 - Modulation: frequency modulation
 - Distortion: sine + distortion

Physical Modeling sSnthesis

- Imitate the physical phenomenon of vibrating objects
 - Numerical modeling of wave questions: e.g. finite difference
 - Digital waveguide: efficient model based on delaylines
 - Physically interpretable parameters

Tone Generation on Computer

• General framework

Unit Generators

- Generate oscillators with classical waveforms
 - Parameters: frequency, pulse width (square osc)

Filters

- Control the frequency response of the source signals
 - Types: lowpass, highpass, bandpass, bandreject (notch)
 - Parameters: cut-off/center frequency, Q

Resonant Lowpass Filter

- Suppress high-frequency content
 - With a resonance at the cut-off frequency

Resonant High-pass Filter

- Suppress low-frequency content
 - With a resonance at the cut-off frequency

Bandpass Filter

- Suppress both low and high frequency content
 - Preserve the content around the center frequency

Amplitude Envelop Generator

- ADSR curve
 - Attack time, decay time , sustain level, and release time

Additive Synthesis

- Synthesize sounds by adding multiple sine oscillators
 - The frequencies of sine oscillators are arbitrary: synthesize inharmonic tones

Hammond Organ

- Drawbars
 - Control the levels of individual tonewheels: harmonic sine oscillators

Examples

- Organ
 - o <u>https://www.vdveen.net/webaudio/hammond/hammond.htm</u>
- Bell
 - <u>https://aatishb.com/synthesine/examples/bell-additive/index.html</u>

Subtractive Synthesis

• Synthesize sounds by filtering wideband oscillators

MiniMoog

• Analog synthesizer

Retro Game Sounds

- Atari Pong (1972): the "beep" sounds
 - Early game sound effect
 - \circ $\:$ Use existing square waveforms in the circuit

http://web.archive.org/web/20180309023632/http://cs.au.dk/~dsound/DigitalAudio.dir/Greenfoot/Pong.dir/Pong.html

Nintendo Entertainment System Chiptunes

https://www.youtube.com/watch?v=la3coK5pq5w

Drum Machine

- Rhythm machine
 - Unique electronic drum kit sound and step sequencer

Roland TR-808

Web version

https://www.youtube.com/watch?v=GZeVAR7d9TA

https://io808.com/

Examples

- Web Audio Demos
 - o <u>http://aikelab.net/websynth/</u>
 - o <u>http://nicroto.github.io/viktor/</u>
 - o <u>https://www.vdveen.net/webaudio/minimoog/mm.htm</u>
- Well-known sounds
 - SuperSaw
 - \circ Leads
 - Pad
 - o Bass
 - 8-Bit sounds (80's game)
 - TR-808 (Drum machine)

- <u>https://learningsynths.ableton.com/en/playground</u>
- <u>https://learningmusic.ableton.com/index.html</u>